Predictive Models for the Management of Vesicoureteral Reflux from the View of Statisticians

Authors

  • Zahra Aryan Pediatric Urology Research Center, Pediatric Center of Excellence, Tehran University of Medical Sciences, Tehran, (IRI), Iran
  • Abdol-Mohammad Kajbafzadeh Pediatric Urology Research Center, Pediatric Center of Excellence, Tehran University of Medical Sciences, Tehran, (IRI), Iran

DOI:

https://doi.org/10.6000/1929-6029.2013.02.02.07

Keywords:

Modeling, Vesicoureteral reflux (VUR), Regression, Artificial neural networks (ANN), Decision support

Abstract

The management of vesicoureteral reflux (VUR) is one of the most challenging issues not only for pediatric urologists but also for pediatric nephrologists and all other related subspecialties. Urinary tract infections (UTI), pyelonephritis and renal scarring which may lead to deterioration in renal function are the common complications in a child presenting with VUR. Due to the patient heterogeneity and varying management options, patient selection for each treatment modality remains as a controversial issue. The different bio-statistical models have been used in order to disclose the factors affecting success of different management modalities and represent the incidence of possible complications. Bio-statistical models are useful to define variables which may help predict the outcome of disease during the different managements. Artificial neural networks (ANN) and regression models are popular methods employed to predict the outcome of urological abnormalities. Statistical models and ANNs provide an estimation of the probability of outcome that is of utmost importance in clinical decision. This study addresses both bio-statistical methods and ANNs employed to predict the outcome of VUR management and their clinical applications. To reach the best fit model that predicts the VUR outcome in a child, widespread knowledge regarding available bio-statistical methods is needed.

Author Biographies

  • Zahra Aryan, Pediatric Urology Research Center, Pediatric Center of Excellence, Tehran University of Medical Sciences, Tehran, (IRI), Iran

    Pediatric urology research center

  • Abdol-Mohammad Kajbafzadeh, Pediatric Urology Research Center, Pediatric Center of Excellence, Tehran University of Medical Sciences, Tehran, (IRI), Iran

    Pediatric Urology research center

References

Peters CA, Skoog SJ, Arant BS Jr., Copp HL, Elder JS, Hudson RG, et al. Summary of the AUA Guideline on Management of Primary Vesicoureteral Reflux in Children. J Urol. 2010; 184(3): 1134-44. http://www.ncbi.nlm.nih.gov/ pubmed/20650499. http://dx.doi.org/10.1016/j.juro.2010.05.065

Cooper CS. Diagnosis and management of vesicoureteral reflux in children. Nat Rev Urol 2009; 6(9): 481-9. http://www.ncbi.nlm.nih.gov/pubmed/19668250.

Vittinghoff E, Glidden DV, Shiboski SC, McCulloch CE. Regression methods in biostatistics: linear, logistic, survival, and repeated measures models: Springer 2011.

Vach W, Roßner R, Schumacher M. Neural networks and logistic regression. Comput Statist Data Anal 1996; 21: 683. http://dx.doi.org/10.1016/0167-9473(95)00033-X

Wang L, Fu K. Artificial neural networks: Wiley Online Library 2009.

Tu JV. Advantages and disadvantages of using artificial neural networks versus logistic regression for predicting medical outcomes. J Clin Epidemiol 1996; 49(11): 1225-31. http://dx.doi.org/10.1016/S0895-4356(96)00002-9

Remzi M, Djavan B. Artificial neural networks in Urology 2004. Eur Urol Suppl 2004; 3(3): 33-8. http://dx.doi.org/10.1016/j.eursup.2004.02.016

Kirkwood BR. Essentials of medical statistics: Blackwell Scientific Publications 1988.

Harrell Jr FE. rms: Regression Modeling Strategies. R package version 2009; 2: 1-0.

Harrell FE. Regression modeling strategies: with applications to linear models, logistic regression, and survival analysis: Springer 2001.

Hosmer DW, Lemeshow S, May S. Applied survival analysis: regression modeling of time to event data: Wiley-Interscience 2011.

Efron B. Logistic regression, survival analysis, and the Kaplan-Meier curve. J Amn Statist Assoc 1988; 83(402): 414-25. http://dx.doi.org/10.1080/01621459.1988.10478612

Dreiseitl S, Ohno-Machado L. Logistic regression and artificial neural network classification models: a methodology review. J Biomed Inform 2002; 35(5): 352-9. http://dx.doi.org/10.1016/S1532-0464(03)00034-0

Carter DB, Signorino CS. Back to the future: Modeling time dependence in binary data. Political Anal 2010; 18(3): 271-92. http://dx.doi.org/10.1093/pan/mpq013

Pradhan B, Lee S. Landslide susceptibility assessment and factor effect analysis: backpropagation artificial neural networks and their comparison with frequency ratio and bivariate logistic regression modelling. Environ Model Software 2010; 25(6): 747-59. http://dx.doi.org/10.1016/j.envsoft.2009.10.016

Kleinbaum DG, Klein M. Maximum likelihood techniques: An overview. Logistic regression 2010; pp. 103-27.

Hosmer DW, Taber S, Lemeshow S. The importance of assessing the fit of logistic regression models: a case study. Am J Public Health 1991; 81(12): 1630-5. http://dx.doi.org/10.2105/AJPH.81.12.1630

Muthén B, Asparouhov T. Beyond multilevel regression modeling: Multilevel analysis in a general latent variable framework. Handbook of Advanced Multilevel Analysis 2011; 15-40.

Hilbe J. Logistic regression models: CRC Press 2009.

Janssen KJ, Siccama I, Vergouwe Y, Koffijberg H, Debray TP, Keijzer M, et al. Development and validation of clinical prediction models: marginal differences between logistic regression, penalized maximum likelihood estimation, and genetic programming. J Clin Epidemiol 2012; 65(4): 404-12. http://www.ncbi.nlm.nih.gov/pubmed/22214734. http://dx.doi.org/10.1016/j.jclinepi.2011.08.011

Steyerberg EW, Borsboom GJ, van Houwelingen HC, Eijkemans MJ, Habbema JDF. Validation and updating of predictive logistic regression models: a study on sample size and shrinkage. Statist Med 2004; 23(16): 2567-86. http://dx.doi.org/10.1002/sim.1844

Cox DR. Regression models and life-tables. J Royal Statist Soc Ser B (Methodological) 1972; 187-220.

Fisher LD, Lin D. Time-dependent covariates in the Cox proportional-hazards regression model. Ann Rev Public Health 1999; 20(1): 145-57. http://dx.doi.org/10.1146/annurev.publhealth.20.1.145

Schemper M, Wakounig S, Heinze G. The estimation of average hazard ratios by weighted Cox regression. Statist Med 2009; 28(19): 2473-89. http://dx.doi.org/10.1002/sim.3623

Vu DQ, Asuncion AU, Hunter DR, Smyth P. Continuous-time regression models for longitudinal networks. Advances in Neural Information Processing Systems MIT Press 2011.

Karnehed N, Rasmussen F, Hemmingsson T, Tynelius P. Obesity and attained education: cohort study of more than 700,000 Swedish men. Obesity 2012; 14(8): 1421-8. http://dx.doi.org/10.1038/oby.2006.161

Jankowska EA, Rozentryt P, Witkowska A, Nowak J, Hartmann O, Ponikowska B, et al. Iron deficiency: an ominous sign in patients with systolic chronic heart failure. Eur Heart J 2010; 31(15): 1872-80. http://dx.doi.org/10.1093/eurheartj/ehq158

Zheng W, McLerran DF, Rolland B, Zhang X, Inoue M, Matsuo K, et al. Association between body-mass index and risk of death in more than 1 million Asians. New Engl J Med 2011; 364(8): 719-29. http://dx.doi.org/10.1056/NEJMoa1010679

Altman DG, Andersen PK. Bootstrap investigation of the stability of a Cox regression model. Statist Med 2006; 8(7): 771-83. http://dx.doi.org/10.1002/sim.4780080702

Sauerbrei W, Schumacher M. A bootstrap resampling procedure for model building: Application to the cox regression model. Statist Med 1992; 11(16): 2093-109. http://dx.doi.org/10.1002/sim.4780111607

Kajbafzadeh AM, Tourchi A, Aryan Z. Factors that impact the outcome of endoscopic correction of vesicoureteral reflux: a multivariate analysis. Int Urol Nephrol 2013; 45(1): 1-9. http://www.ncbi.nlm.nih.gov/pubmed/23161378. http://dx.doi.org/10.1007/s11255-012-0327-5

Austin JC, Cooper CS. Vesicoureteral reflux: who benefits from correction. Urol Clin North Am 2010; 37(2): 243-52. http://www.ncbi.nlm.nih.gov/pubmed/20569802. http://dx.doi.org/10.1016/j.ucl.2010.03.012

Kaplan GW. Words of wisdom: re: observation of patients with vesicoureteral reflux off antibiotic prophylaxis: physician bias on patient selection and risk factors for recurrent febrile urinary tract infection. Eur Urol 2013; 63(2): 403. http://www.ncbi.nlm.nih.gov/pubmed/23272735. http://dx.doi.org/10.1016/j.eururo.2012.11.020

Drzewiecki BA, Thomas JC, Pope JCt, Adams MC, Brock JW 3rd, Tanaka ST. Observation of patients with vesicoureteral reflux off antibiotic prophylaxis: physician bias on patient selection and risk factors for recurrent febrile urinary tract infection. J Urol 2012; 188(4 Suppl): 1480-4. http://www.ncbi. nlm.nih.gov/pubmed/22906676. http://dx.doi.org/10.1016/j.juro.2012.02.033

Tekgul S, Riedmiller H, Hoebeke P, Kocvara R, Nijman RJ, Radmayr C, et al. EAU Guidelines on Vesicoureteral Reflux in Children. Eur Urol 2012. http://www.ncbi.nlm.nih.gov/ pubmed/22698573.

Knudson MJ, Austin JC, Wald M, Makhlouf AA, Niederberger CS, Cooper CS. Computational model for predicting the chance of early resolution in children with vesicoureteral reflux. J Urol 2007; 178(4 Pt 2): 1824-7. http://www.ncbi.nlm. nih.gov/pubmed/17707424. http://dx.doi.org/10.1016/j.juro.2007.05.093

Lebowitz RL, Olbing H, Parkkulainen KV, Smellie JM, Tamminen-Mobius TE. International system of radiographic grading of vesicoureteric reflux. International Reflux Study in Children. Pediatr Radiol 1985; 15(2): 105-9. http://www.ncbi. nlm.nih.gov/pubmed/3975102. http://dx.doi.org/10.1007/BF02388714

Shiraishi K, Matsuyama H, Nepple KG, Wald M, Niederberger CS, Austin CJ, et al. Validation of a prognostic calculator for prediction of early vesicoureteral reflux resolution in children. J Urol 2009; 182(2): 687-90; discussion 90-1. http://www.ncbi.nlm.nih.gov/pubmed/ 19539324. http://dx.doi.org/10.1016/j.juro.2009.04.036

Camacho V, Estorch M, Fraga G, Mena E, Fuertes J, Hernandez MA, et al. DMSA study performed during febrile urinary tract infection: a predictor of patient outcome? Eur J Nucl Med Mol Imaging 2004; 31(6): 862-6. http://www.ncbi. nlm.nih.gov/pubmed/14758509. http://dx.doi.org/10.1007/s00259-003-1410-z

Nepple KG, Knudson MJ, Austin JC, Wald M, Makhlouf AA, Niederberger CS, et al. Adding renal scan data improves the accuracy of a computational model to predict vesicoureteral reflux resolution. J Urol 2008; 180(4 Suppl): 1648-

; discussion 52. http://www.ncbi.nlm.nih.gov/pubmed/ 18715584. http://dx.doi.org/10.1016/j.juro.2008.03.109

Zerati Filho M, Calado AA, Barroso U Jr., Amaro JL. Spontaneous resolution rates of vesicoureteral reflux in Brazilian children: a 30-year experience. Int Braz J Urol 2007; 33(2): 204-12; discussion 13-5. http://www.ncbi.nlm. nih.gov/pubmed/17488541. http://dx.doi.org/10.1590/S1677-55382007000200012

Huang FY, Tsai TC. Resolution of vesicoureteral reflux during medical management in children. Pediatr Nephrol 1995; 9(6): 715-7. http://www.ncbi.nlm.nih.gov/pubmed/ 8747111. http://dx.doi.org/10.1007/BF00868720

Estrada CR Jr., Passerotti CC, Graham DA, Peters CA, Bauer SB, Diamond DA, et al. Nomograms for predicting annual resolution rate of primary vesicoureteral reflux: results from 2,462 children. J Urol 2009; 182(4): 1535-41. http://www.ncbi.nlm.nih.gov/pubmed/19683762. http://dx.doi.org/10.1016/j.juro.2009.06.053

Elmore JM, Scherz HC, Kirsch AJ. Dextranomer/hyaluronic acid for vesicoureteral reflux: success rates after initial treatment failure. J Urol 2006; 175(2): 712-5. http://www.ncbi. nlm.nih.gov/pubmed/16407036. http://dx.doi.org/10.1016/S0022-5347(05)00187-4

Routh JC, Reinberg Y, Ashley RA, Inman BA, Wolpert JJ, Vandersteen DR, et al. Multivariate comparison of the efficacy of intraureteral versus subtrigonal techniques of dextranomer/hyaluronic acid injection. J Urol 2007; 178(4 Pt 2): 1702-5; discussion 5-6. http://www.ncbi.nlm.nih.gov/ pubmed/17707019.

Lorenzo AJ, Pippi Salle JL, Barroso U, Cook A, Grober E, Wallis MC, et al. What are the most powerful determinants of endoscopic vesicoureteral reflux correction? Multivariate analysis of a single institution experience during 6 years. J Urol 2006; 176(4 Pt 2): 1851-5. http://www.ncbi.nlm.nih.gov/ pubmed/16945671. http://dx.doi.org/10.1016/S0022-5347(06)00599-4

Dave S, Lorenzo AJ, Khoury AE, Braga LH, Skeldon SJ, Suoub M, et al. Learning from the learning curve: factors associated with successful endoscopic correction of vesicoureteral reflux using dextranomer/hyaluronic acid copolymer. J Urol 2008; 180(4 Suppl): 1594-9; discussion 9-600. http://www.ncbi.nlm.nih.gov/pubmed/18710756. http://dx.doi.org/10.1016/j.juro.2008.03.084

Yucel S, Gupta A, Snodgrass W. Multivariate analysis of factors predicting success with dextranomer/hyaluronic acid injection for vesicoureteral reflux. J Urol 2007; 177(4): 1505-9. http://www.ncbi.nlm.nih.gov/pubmed/17382765. http://dx.doi.org/10.1016/j.juro.2006.11.077

Kajbafzadeh A-M, Aryan Z, Tourchi A, Alizadeh H. Long-term Ultrasound Appearance of Concomitant Autologous Blood and Dextranomer/Hyaluronic Acid Copolymer Implants: Is It Associated With Successful Correction of Vesicoureteral Reflux? Urology 2013; 81(2): 407-13. http://linkinghub. elsevier.com/retrieve/pii/S0090429512012253?showall=true. http://dx.doi.org/10.1016/j.urology.2012.10.006

Lavelle MT, Conlin MJ, Skoog SJ. Subureteral injection of Deflux for correction of reflux: analysis of factors predicting success. Urology 2005; 65(3): 564-7. http://www.ncbi.nlm. nih.gov/pubmed/15780377. http://dx.doi.org/10.1016/j.urology.2004.09.068

Routh JC, Inman BA, Reinberg Y. Dextranomer/hyaluronic acid for pediatric vesicoureteral reflux: systematic review. Pediatrics 2010; 125(5): 1010-9. http://www.ncbi.nlm.nih.gov/ pubmed/20368325. http://dx.doi.org/10.1542/peds.2009-2225

Routh JC, Kramer SA, Inman BA, Ashley RA, Wolpert JJ, Vandersteen DR, et al. Utility of dextranomer/hyaluronic acid injection in setting of bladder and ureteral anomalies. Urology 2008; 71(3): 435-8. http://www.ncbi.nlm.nih.gov/pubmed/ 18342182. http://dx.doi.org/10.1016/j.urology.2007.10.043

Yucel S, Ucar M, Guntekin E, Kukul E, Melikoglu M, Baykara M. The effect of location of the ureteric orifice on the efficacy of endoscopic injection to correct vesico-ureteric reflux. BJU Int 2005; 95(9): 1314-8. http://www.ncbi.nlm.nih.gov/pubmed/ 15892824. http://dx.doi.org/10.1111/j.1464-410X.2005.05525.x

Kajbafzadeh AM, Tourchi A. Usefulness of concomitant autologous blood and dextranomer/hyaluronic Acid copolymer injection to correct vesicoureteral reflux. J Urol 2012; 188(3): 948-52. http://www.ncbi.nlm.nih.gov/pubmed/ 22819104. http://dx.doi.org/10.1016/j.juro.2012.04.119

Stroup DF, Berlin JA, Morton SC, Olkin I, Williamson GD, Rennie D, et al. Meta-analysis of observational studies in epidemiology. JAMA: J Am Med Assoc 2000; 283(15): 2008-12. http://dx.doi.org/10.1001/jama.283.15.2008

Kaye JD, Srinivasan AK, Delaney C, Cerwinka WH, Elmore JM, Scherz HC, et al. Clinical and radiographic results of endoscopic injection for vesicoureteral reflux: Defining measures of success. J Pediatr Urol 2012; 8(3): 297-303. http://www.ncbi.nlm.nih.gov/pubmed/21543259. http://dx.doi.org/10.1016/j.jpurol.2011.02.006

Hunziker M, Mohanan N, D'Asta F, Puri P. Incidence of febrile urinary tract infections in children after successful endoscopic treatment of vesicoureteral reflux: a long-term follow-up. J Pediatr 2012; 160(6): 1015-20. http://www.ncbi.nlm.nih.gov/pubmed/22284917. http://dx.doi.org/10.1016/j.jpeds.2011.12.033

Yegnanarayana B. Artificial neural networks: PHI Learning Pvt. Ltd. 2004.

Fyfe C. Artificial Neural Networks. Do Smart Adaptive Systems Exist? 2005; 57-79.

Zurada JM. Introduction to artificial neural systems: West St. Paul, Minn 1992.

Yao X. Evolving artificial neural networks. Proc IEEE 1999; 87(9): 1423-47. http://dx.doi.org/10.1109/5.784219

Hagan MT, Menhaj MB. Training feedforward networks with the Marquardt algorithm. Neural Networks, IEEE Transactions on. 1994; 5(6): 989-93. http://dx.doi.org/10.1109/72.329697

Hashem S, Schmeiser B, Yih Y, Eds. Optimal linear combinations of neural networks: an overview. Neural Networks, 1994 IEEE World Congress on Computational Intelligence, 1994 IEEE International Conference on 1994: IEEE.

Hassoun MH. Fundamentals of artificial neural networks: MIT Press 1995.

White H. Artificial neural networks: approximation and learning theory: Blackwell Publishers, Inc. 1992.

Zhang G, Eddy Patuwo B, Y Hu M. Forecasting with artificial neural networks: The state of the art. Int J Forecasting 1998; 14(1): 35-62. http://dx.doi.org/10.1016/S0169-2070(97)00044-7

Serrano-Durba A, Serrano AJ, Magdalena JR, Martin JD, Soria E, Dominguez C, et al. The use of neural networks for predicting the result of endoscopic treatment for vesico-ureteric reflux. BJU Int 2004; 94(1): 120-2. http://www. ncbi.nlm.nih.gov/pubmed/15217444. http://dx.doi.org/10.1111/j.1464-410X.2004.04912.x

Seckiner I, Seckiner SU, Erturhan S, Erbagci A, Solakhan M, Yagci F. The use of artificial neural networks in decision support in vesicoureteral reflux treatment. Urol Int 2008; 80(3): 283-6. http://www.ncbi.nlm.nih.gov/pubmed/18480632. http://dx.doi.org/10.1159/000127342

Downloads

Published

2013-04-30

Issue

Section

General Articles

How to Cite

Predictive Models for the Management of Vesicoureteral Reflux from the View of Statisticians. (2013). International Journal of Statistics in Medical Research, 2(2), 135-143. https://doi.org/10.6000/1929-6029.2013.02.02.07

Similar Articles

1-10 of 182

You may also start an advanced similarity search for this article.