Determining the Characteristics of Sodium Benzoate (E211) Production Using Mathematical Method

Authors

  • Anita Kovac Kralj University of Maribor Faculty of Chemistry and Chemical engineering

DOI:

https://doi.org/10.6000/1929-5030.2012.01.01.4

Keywords:

sodium benzoate synthesis, strong electrolyte, linear extrapolation, conductivity.

Abstract

The productivity of a particular product is highly effective if we know the chemical kinetics. Determining chemical kinetics requires a fundamental knowledge of reactants' declining concentrations or the formation of product concentration. Concentration can be determined by double-linear extrapolation, using the conductivity measurement of strong electrolytes. This method is based on two linear sloped-lines from which the linear constants from different diagrams can be read:

1) The first diagram represents linear time dependence regarding difference in conductivity
2) The second diagram represents linear difference in conductivity dependence regarding concentration.

Sodium benzoate (NaC6H5CO2) is a preservative. It is produced by the neutralization of benzoic acid (C7H6O2) with sodium hydroxide (NaOH) in a stirred batch reactor under different room temperatures:

NaOH  + C7H6O2 <--> NaC6H5CO2 + H2O

The kinetic parameters and characteristics of sodium benzoate production (activated energy, reaction rate constant, rate order) were determined.

Author Biography

  • Anita Kovac Kralj, University of Maribor Faculty of Chemistry and Chemical engineering
    Chemical engineering

References


[1] Kim JI. The Chemical Behavior of Transuranium Elements and Barrier Functions in Natural Aquifer Systems. Mater Res Soc Symp Proc 1993; 294: 3-21. http://dx.doi.org/10.1557/PROC-294-3
[2] Seaborg GT. Overview of the actinide and lanthanide (the f) elements. Radiochim Acta 1993; 61: 115-22.
[3] Choppin GR. Comparative solution chemistry of the 4f and 5f elements. J Alloys Comp 1995; 223: 174-9. http://dx.doi.org/10.1016/0925-8388(94)09002-5
[4] Pashalidis I, Runde W, Kim JI. A study of solid-liquid phase equilibria of Pu(VI) and U(VI) in aqueous carbonate systems. Radiochim Acta 1993; 61: 141-6.
[5] Meinrath G, Kato Y, Kimura T, Yoshida Z. Solid-Aqueous Phase Equilibria of Uranium under Ambient Conditions. Radiochim Acta 1996; 75: 159-67.
[6] Meinrath G, Takeishi H. Solid-liquid equlibria of Nd3+ in carbonate solutions. J Alloys Comp 1993; 194: 93-9. http://dx.doi.org/10.1016/0925-8388(93)90651-3
[7] Runde W, Meinrath G, Kim JI. A study of solid-liquid phase equilibria of trivalent lanthanide and actinide ions in carbonate systems. Radiochim Acta 1992; 58: 93-100.
[8] Kolokassidou C, Pashalidis I. Effect of humic acid on the solid phase stability and solubility of UO2(OH)2. J Radioanal Nucl Chem 2009; 279: 523-8. http://dx.doi.org/10.1007/s10967-007-7316-2
[9] Antoniou S, Kolokassidou C, Polychronopoulou K, Pashalidis I. Effect of humic acid on the solid phase stability of UO2CO3. J Radioanal Nucl Chem 2009; 279: 863-6. http://dx.doi.org/10.1007/s10967-008-7367-4
[10] Antoniou S, Pashalidis I. The Effect of Natural Organic Matter on the Formation and Solubility of M(OH)4 Solid Phases (Th(OH)4, Zr(OH)4 Ce(OH)4). In: Lekkas DF, editor. Proceedings to the 11th International Conference on Environmental Science and Technology. Chania – Crete, Greece 3-5 September 2009. University of the Aegean 2009: pp. 1-8.
[11] Antoniou S, Pashalidis I. The Effect of Natural Organic Matter on the Solid Phase Stability and Solubility of Th(OH)4. In: González-Vila JM, editor. Proceedings to the 15th IHSS Meeting. Tenerife - Canary Islands 2010. Institute for Natural Resources and Agrobiology 2010; pp.157-60.
[12] Antoniou S, Pashalidis I, Gessner A, Kumke MU. The effect of humic acid on the formation and solubility of secondary solid phases (Nd(OH)CO3 and Sm(OH)CO3). Radiochim Acta 2011; 99: 217-23. http://dx.doi.org/10.1524/ract.2011.1812
[13] Antoniou S, Pashalidis I, Gessner A, Kumke, MU. Spectroscopic investigations on the effect of humic acid on the formation and solubility of secondary solid phases of (Ln2(CO3)3. J Rare Earth 2011; 29: 516-21. http://dx.doi.org/10.1016/S1002-0721(10)60490-5
[14] Kitano Y, Kanamori N, Tokuyama A. Effects of organic matter on solubilities and crystal forms of carbonates. Am Zool 1969; 9: 681-8.
[15] Kodona EK, Alexopoulos C, Panou E, Pomonis PJ. SelfOrganized Meso- and Hybridic Phases of Poly(aspartic acid) and Poly(glutamic amino acid) with Cationic Surfactants (CnTAB, n = 14, 16) and a Silica Source (TEOS). Chem Mater 2007; 19: 1853-61. http://dx.doi.org/10.1021/cm062878g
[16] Kolokassidou K, Szymczak W, Wolf M, Obermeier C, Buckau G, Pashalidis I. Hydrophilic olive cake extracts: Characterization by physicochemical properties and Cu(II) complexation. J Haz Mat 2009; 164: 442-7. http://dx.doi.org/10.1016/j.jhazmat.2008.08.016
[17] Lu YW, Laurent G, Pereira H. A novel methodology for evaluation of formation constants of complexes: example of lanthanide–Arsenazo III complexes. Talanta 2004; 62: 959- 70. http://dx.doi.org/10.1016/j.talanta.2003.10.030
[18] Konstantinou M, Kolokassidou K, Pashalidis I. Studies on the interaction of olive cake and its hydrophylic extracts with polyvalent metal ions (Cu(II), Eu(III)) in aqueous solutions. J Haz Mat 2009; 166: 1169-73. http://dx.doi.org/10.1016/j.jhazmat.2008.12.016
[19] Sparks DL. Environmental Soil Chemistry, 2nd ed. Academic Press; London 2003.
[20] Kellner R, Mermet JM, Otto M, Widmer HM. Analytical Chemistry. Wiley-VCH; Weinheim 1998.
[21] Jenkins R, Snyder RL. Introduction to X-ray Powder Diffractometry. John Wiley & Sons Inc; New York 1996

Downloads

Published

2012-10-15

Issue

Section

General Articles

How to Cite

Determining the Characteristics of Sodium Benzoate (E211) Production Using Mathematical Method. (2012). Journal of Applied Solution Chemistry and Modeling, 1(1), 25-37. https://doi.org/10.6000/1929-5030.2012.01.01.4

Similar Articles

31-40 of 47

You may also start an advanced similarity search for this article.