Potentiometric and Thermodynamic Studies of Some Azosulfoxine Derivatives and Their Metal Complexes

Authors

  • A.A. El-Bindary Damietta University, Faculty of Science
  • A.Z. El-Sonbati University of Damietta
  • M.A. Diab University of Damietta
  • A.M. Barakat University of Damietta

DOI:

https://doi.org/10.6000/1929-5030.2013.02.03.4

Keywords:

Azosulfoxines, potentiometry, stability constants and thermodynamics

Abstract

The proton-ligand dissociation constants of some azosulfoxine derivatives and metal-ligand stability constants of their complexes with the metal ions (Mn2+, Co2+, Ni2+ and Cu2+) have been determined potentiometrically in 0.1 M KCl and 50 % (by volume) DMF–water mixture at (298, 308 and 318) K. The stability constants of the formed complexes increases in the order Mn2+, Co2+, Ni2+ and Cu2+. The effect of temperature was studied and the corresponding thermodynamic parameters (ΔG, ΔH and ΔS) were derived and discussed. The dissociation process is non-spontaneous, endothermic and entropically unfavourable. The formation of the metal complexes has been found to be spontaneous, endothermic and entropically favourable.

Author Biographies

  • A.A. El-Bindary, Damietta University, Faculty of Science
    Chemistry
  • A.Z. El-Sonbati, University of Damietta
    Department of Chemistry, Faculty of Science
  • M.A. Diab, University of Damietta
    Department of Chemistry, Faculty of Science
  • A.M. Barakat, University of Damietta
    Department of Chemistry, Faculty of Science

References


[1] Butler MS. The Role of Natural Product Chemistry in Drug Discovery. J Nat Prod 2004; 67: 2141-53. http://dx.doi.org/10.1021/np040106y
[2] Kurihara M, Hirooka A, Kume S, Sugimoto M, Nishihara H. Redox-conjugated reversible isomerization of ferrocenylazobenzene with a single green light. J Am Chem Soc 2002; 124: 8800-10. http://dx.doi.org/10.1021/ja026625+
[3] Yamaguchi K, Kume S, Namiki K, Murata M, Tamia N, Nishihara H. UV-Vis, NMR, and time-Resolved spectroscopy analysis of photoisomerization behavior of three- and sixazobenzene-bound tris(bipyridine) cobalt complexes. Inorg Chem 2005; 44: 9056-67. http://dx.doi.org/10.1021/ic0513538
[4] Mubarak AT, El-Assiery SA. Supramolecular structures and properties models of macrocyclic polymer complexes. Appl Organomet Chem 2004; 18: 343-52. http://dx.doi.org/10.1002/aoc.645
[5] Otsuki J, Omokawa N, Yoshiba K, Yoshiba I, Akasaka T, Suenobu T, et al. Synthesis and structural, electrochemical, and optical properties of Ru(II) complexes with azobis(2,2'- bipyridine)s. Inorg Chem 2003; 42: 3057-66. http://dx.doi.org/10.1021/ic026040g
[6] Aziz MS, El-Sonbati AZ, Hilali AS. D.C. conduction phenomenon of some rhodanine azo complexes. Chem Pap 2002; 56: 305-308.
[7] Li X, Jiao Y, Li S. The syntheses, properties and application of new conducting polymers. Eur Polym J 1991; 27: 1345-51. http://dx.doi.org/10.1016/0014-3057(91)90233-E
[8] Misra TK, Das D, Sinha C. Chemistry of azoimidazoles: synthesis, spectral characterization and redox properties of bis(N(1)-alkyl-2-(arylazo)imidazole) copper(I) and silver(I) complexes. Polyhedron 1997; 16: 4163-70. http://dx.doi.org/10.1016/S0277-5387(97)00127-7
[9] El-Bindary AA, El-Sonbati AZ, Diab MA, Abd El-Kader MK. Potentiometric and Thermodynamic Studies of Some Schiffbase Derivatives of 4-Aminoantipyrine and Their Metal Complexes. J Chem 2013; ID 682186.
[10] Mubarak AT, Al-Shihri AS, Nassef HM, El-Bindary AA. Potentiometric and thermodynamic studies of vanillin and its metal complexes. J Chem Eng Data 2010; 55: 5539-42. http://dx.doi.org/10.1021/je100266u
[11] Mubarak AT, El-Bindary AA. Potentiometric and thermodynamic studies of 4-(1H-indol-3-yl)butanoic acid and its metal complexes. J Chem Eng Data 2010; 55: 5543-46. http://dx.doi.org/10.1021/je100267s
[12] Al-Sarawy AA, El-Bindary AA, El-Sonbati AZ, Mokpel MM. Potentiometric and thermodynamic studies of azosulfonamide drugs. Polish J Chem 2006; 80: 289-95.
[13] El-Ghamaz NA, El-Mallah HM, El-Sonbati AZ, Diab MA, ElBindary AA, Barakat AM. Optical properties studies on metalligand bonding of novel quinoline azodyes thin films. Solid State Sci 2013; 22: 56-64. http://dx.doi.org/10.1016/j.solidstatesciences.2013.05.005
[14] Diab MA, El-Sonbati AZ, El-Bindary AA, Barakat AM. Supramolecular spectral studies on metal-ligand bonding of novel quinoline azodyes. Spectrochim Acta Part A 2013; 116: 428-39. http://dx.doi.org/10.1016/j.saa.2013.07.053
[15] Jeffery GH, Bassett J, Mendham J, Deney RC, Vogel’s textbook of quantitative chemical analysis. 5th ed. Longman: London 1989.
[16] Bates RG, Paabo M, Robinson RA. Interpretation of pH measurements in alcohol-water solvents. J Phys Chem 1963; 67: 1833-38. http://dx.doi.org/10.1021/j100803a022
[17] Irving HM, Miles MG, Pettit LD. A Study of some problems in determining the stoicheiometric proton dissociation constants of complexes by potentiometric titrations using a glass electrode. Anal Chim Acta 1967; 38: 475-88. http://dx.doi.org/10.1016/S0003-2670(01)80616-4
[18] Irving H, Rossotti HS. The Calculation of formation curves of metal complexes from pH titration curves in mixed solvents. J Chem Soc 1954; 2904-10. http://dx.doi.org/10.1039/jr9540002904
[19] Farkas E, Csoka H. Solution equilibrium studies on metal complexes of 2,3-dihydroxy-phenylalanine-hydroxamic acid (Dopaha) and models: Catecholate versus hydroxamate coordination in iron(III)-, aluminium(III)- and molybdenum(VI)-Dopaha complexes. J Inorg Biochem 2002; 89: 219-26. http://dx.doi.org/10.1016/S0162-0134(02)00379-3
[20] Omar MM, Mohamed GG. Potentiometric, spectroscopic and thermal studies on the metal chelates of 1-(2- thiazolylazo)-2-naphthalenol. Spectrochim Acta Part A 2005; 61: 929-36. http://dx.doi.org/10.1016/j.saa.2004.05.040
[21] Irving H, Rossotti HS. Methods for computing successive stability constants from experimental formation curves. J Chem Soc 1953; 3397-405. http://dx.doi.org/10.1039/jr9530003397
[22] Rossotti FJC, Rossotti HS. Graphical methods for determining equilibrium constants. I. Systems of mononuclear complexes. Acta Chem Scand 1955; 9: 1166- 76. http://dx.doi.org/10.3891/acta.chem.scand.09-1166
[23] Beck MT, Nagybal I. Chemistry of complex equilibrium. Wiley: New York 1990.
[24] Khalil MM, Radalla AM, Mohamed AG. Potentiometric investigation on complexation of divalent transition metal ions with some zwitterionic buffers and triazoles. J Chem Eng Data 2009; 54: 3261-72. http://dx.doi.org/10.1021/je9002459
[25] Sanyal P, Sengupta GP. Potentiometric studies of complexformation of some trivalent rare-earths with p,p’- bromosulphonosalicylidene anil. J Ind Chem Soc 1990; 67: 342-46.
[26] Sridhar S, Kulanthaipandi P, Thillaiarasu P, Thanikachalam V, Manikandan G. Protonating and chelating efficiencies of some biologically important thiocarbonohydrazides in 60 % (v/v) ethanol-water systems by potentiometric and spectrophotometric methods. World J Chem 2009; 4: 133-40.
[27] Athawale VD, Lele V. Stability constants and thermodynamic parameters of complexes of lanthanide ions and (±)-norvaline. Chem Eng Data 1996; 41: 1015-19. http://dx.doi.org/10.1021/je950306z
[28] Athawale VD, Nerkar SS. Stability constants of complexes of divalent and rare earth metals with substituted salicynals. Monatsh Chem 2000; 131: 267-76. http://dx.doi.org/10.1007/s007060070102
[29] Ibañez GA, Escandar GM. Complexation of cobalt(II), nickel(II) and zinc(II) ions with mono and binucleating azo compounds: A potentiometric and spectroscopic study in aqueous solution. Polyhedron 1998; 17: 4433-41. http://dx.doi.org/10.1016/S0277-5387(98)00249-6
[30] Malik WU, Tuli GD, Madan RD. Selected topics in inorganic chemistry. 3rd ed: Chand S & Company LTD, New Delhi 1984.
[31] Harlly FR, Burgess RM, Alcock RM. Solution equilibria. Ellis Harwood: Chichester 1980; p. 257.
[32] Orgel LE. An introduction to transition metal chemistry ligand field theory. Methuen; London 1966; p. 255.
[33] Bebot-Bringaud A, Dange C, Fauconnier N, Gerard C. 31P NMR, potentiometric and spectrophotometric studies of phytic acid ionization and complexation properties toward Co2+, Ni2+, Cu2+, Zn2+ and Cd2+. J Inorg Biochem 1999; 75: 71-78. http://dx.doi.org/10.1016/S0162-0134(99)00041-0
[34] Gaber M, Al-Shihry SS, El-Bindary AA. Potentiometric and thermodynamic studies of 2-mercapto-5-(1- hydroxynaphthylide amino)-1,3,4-thiadiazole and its metal complexes. J Therm Anal Calorim 2005; 82: 63-68. http://dx.doi.org/10.1007/s10973-005-0842-z
[35] Mubarak AT, El-Sonbati AZ, El-Bindary AA. Potentiometric and conductometric studies on the complexes of some transition metals with rhodanine azosulfonamide derivatives. XI. Chem Pap 2004; 58: 320-23.

Downloads

Published

2013-08-31

Issue

Section

General Articles

How to Cite

Potentiometric and Thermodynamic Studies of Some Azosulfoxine Derivatives and Their Metal Complexes. (2013). Journal of Applied Solution Chemistry and Modeling, 2(3), 191-196. https://doi.org/10.6000/1929-5030.2013.02.03.4

Similar Articles

11-20 of 26

You may also start an advanced similarity search for this article.